Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Space Phys ; 125(4): e2019JA027181, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32728509

RESUMO

During the September 2015 to March 2016 duration (sometimes referred to as Phase 1A) of the Magnetospheric Multiscale Mission, the Dual Electron Spectrometers (DES) were configured to generously utilize lossy compression. While this maximized the number of velocity distribution functions downlinked, it came at the expense of lost information content for a fraction of the frames. Following this period of lossy compression, the DES was reconfigured in a way that allowed for 95% of the frames to arrive to the ground without loss. Using this high-quality set of frames from on-orbit observations, we compressed and decompressed the frames on the ground to create a side-by-side record of the compression effect. This record was used to drive an optimization method that (a) derived basis functions capable of approximating the lossless sample space and with nonnegative coefficients and (b) fitted a function which maps the lossy frames to basis weights that recreate the frame without compression artifacts. This method is introduced and evaluated in this paper. Data users should expect a higher level of confidence in the absolute scale of density/temperature measurements and notice less sinusoidal bias in the velocity X and Y components (GSE).

2.
Phys Rev Lett ; 125(2): 025103, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32701350

RESUMO

We report measurements of lower-hybrid drift waves driving electron heating and vortical flows in an electron-scale reconnection layer under a guide field. Electrons accelerated by the electrostatic potential of the waves exhibit perpendicular and nongyrotropic heating. The vortical flows generate magnetic field perturbations comparable to the guide field magnitude. The measurements reveal a new regime of electron-wave interaction and how this interaction modifies the electron dynamics in the reconnection layer.

3.
J Geophys Res Space Phys ; 125(4): e2019JA027665, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32714734

RESUMO

On 5 May 2017, MMS observed a crater-type flux rope on the dawnside tailward magnetopause with fluctuations. The boundary-normal analysis shows that the fluctuations can be attributed to nonlinear Kelvin-Helmholtz (KH) waves. Reconnection signatures such as flow reversals and Joule dissipation were identified at the leading and trailing edges of the flux rope. In particular, strong northward electron jets observed at the trailing edge indicated midlatitude reconnection associated with the 3-D structure of the KH vortex. The scale size of the flux rope, together with reconnection signatures, strongly supports the interpretation that the flux rope was generated locally by KH vortex-induced reconnection. The center of the flux rope also displayed signatures of guide-field reconnection (out-of-plane electron jets, parallel electron heating, and Joule dissipation). These signatures indicate that an interface between two interlinked flux tubes was undergoing interaction, causing a local magnetic depression, resulting in an M-shaped crater flux rope, as supported by reconstruction.

4.
Nat Commun ; 11(1): 141, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919351

RESUMO

The Magnetospheric Multiscale (MMS) spacecraft encounter an electron diffusion region (EDR) of asymmetric magnetic reconnection at Earth's magnetopause. The EDR is characterized by agyrotropic electron velocity distributions on both sides of the neutral line. Various types of plasma waves are produced by the magnetic reconnection in and near the EDR. Here we report large-amplitude electron Bernstein waves (EBWs) at the electron-scale boundary of the Hall current reversal. The finite gyroradius effect of the outflow electrons generates the crescent-shaped agyrotropic electron distributions, which drive the EBWs. The EBWs propagate toward the central EDR. The amplitude of the EBWs is sufficiently large to thermalize and diffuse electrons around the EDR. The EBWs contribute to the cross-field diffusion of the electron-scale boundary of the Hall current reversal near the EDR.

5.
Phys Rev Lett ; 123(22): 225101, 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31868399

RESUMO

Aided by fully kinetic simulations, spacecraft observations of magnetic reconnection in Earth's magnetotail are analyzed. The structure of the electron diffusion region is in quantitative agreement with the numerical model. Of special interest, the spacecraft data reveal how reconnection is mediated by off-diagonal stress in the electron pressure tensor breaking the frozen-in law of the electron fluid.

6.
Geophys Res Lett ; 46(12): 6287-6296, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31598018

RESUMO

While vorticity defined as the curl of the velocity has been broadly used in fluid and plasma physics, this quantity has been underutilized in space physics due to low time resolution observations. We report Magnetospheric Multiscale (MMS) observations of enhanced electron vorticity in the vicinity of the electron diffusion region of magnetic reconnection. On 11 July 2017 MMS traversed the magnetotail current sheet, observing tailward-to-earthward outflow reversal, current-carrying electron jets in the direction along the electron meandering motion or out-of-plane direction, agyrotropic electron distribution functions, and dissipative signatures. At the edge of the electron jets, the electron vorticity increased with magnitudes greater than the electron gyrofrequency. The out-of-plane velocity shear along distance from the current sheet leads to the enhanced vorticity. This, in turn, contributes to the magnetic field perturbations observed by MMS. These observations indicate that electron vorticity can act as a proxy for delineating the electron diffusion region of magnetic reconnection.

7.
Nature ; 569(7757): E9, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31073227

RESUMO

Change history: In this Letter, the y-axis values in Fig. 3f should go from 4 to -8 (rather than from 4 to -4), the y-axis values in Fig. 3h should appear next to the major tick marks (rather than the minor ticks), and in Fig. 1b, the arrows at the top and bottom of the electron-scale current sheet were going in the wrong direction; these errors have been corrected online.

8.
Science ; 362(6421): 1391-1395, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30442767

RESUMO

Magnetic reconnection is an energy conversion process that occurs in many astrophysical contexts including Earth's magnetosphere, where the process can be investigated in situ by spacecraft. On 11 July 2017, the four Magnetospheric Multiscale spacecraft encountered a reconnection site in Earth's magnetotail, where reconnection involves symmetric inflow conditions. The electron-scale plasma measurements revealed (i) super-Alfvénic electron jets reaching 15,000 kilometers per second; (ii) electron meandering motion and acceleration by the electric field, producing multiple crescent-shaped structures in the velocity distributions; and (iii) the spatial dimensions of the electron diffusion region with an aspect ratio of 0.1 to 0.2, consistent with fast reconnection. The well-structured multiple layers of electron populations indicate that the dominant electron dynamics are mostly laminar, despite the presence of turbulence near the reconnection site.

9.
J Geophys Res Space Phys ; 123(2): 1118-1133, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29938153

RESUMO

This paper reports on Magnetospheric Multiscale observations of whistler mode chorus and higher-frequency electrostatic waves near and within a reconnection diffusion region on 23 November 2016. The diffusion region is bounded by crescent-shaped electron distributions and associated dissipation just upstream of the X-line and by magnetic field-aligned currents and electric fields leading to dissipation near the electron stagnation point. Measurements were made southward of the X-line as determined by southward directed ion and electron jets. We show that electrostatic wave generation is due to magnetosheath electron beams formed by the electron jets as they interact with a cold background plasma and more energetic population of magnetospheric electrons. On the magnetosphere side of the X-line the electron beams are accompanied by a strong perpendicular electron temperature anisotropy, which is shown to be the source of an observed rising-tone whistler mode chorus event. We show that the apex of the chorus event and the onset of electrostatic waves coincide with the opening of magnetic field lines at the electron stagnation point.

10.
Phys Rev Lett ; 120(22): 225101, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29906189

RESUMO

Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.

11.
Nature ; 557(7704): 202-206, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29743689

RESUMO

Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region1,2. On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed3-5. Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region 6 . In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales7-11. However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.

12.
Geophys Res Lett ; 45(2): 578-584, 2018 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-29576666

RESUMO

We report Magnetospheric Multiscale observations of electron pressure gradient electric fields near a magnetic reconnection diffusion region using a new technique for extracting 7.5 ms electron moments from the Fast Plasma Investigation. We find that the deviation of the perpendicular electron bulk velocity from E × B drift in the interval where the out-of-plane current density is increasing can be explained by the diamagnetic drift. In the interval where the out-of-plane current is transitioning to in-plane current, the electron momentum equation is not satisfied at 7.5 ms resolution.

13.
Phys Rev Lett ; 120(5): 055101, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29481157

RESUMO

Fully kinetic simulations of asymmetric magnetic reconnection reveal the presence of magnetic-field-aligned beams of electrons flowing toward the topological magnetic x line. Within the ∼6d_{e} electron-diffusion region, the beams become oblique to the local magnetic field, providing a unique signature of the electron-diffusion region where the electron frozen-in law is broken. The numerical predictions are confirmed by in situ Magnetospheric Multiscale spacecraft observations during asymmetric reconnection at Earth's dayside magnetopause.

14.
Phys Plasmas ; 25(3)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32905417

RESUMO

In space plasma, various effects of magnetic reconnection and turbulence cause the electron motion to significantly deviate from their Larmor orbits. Collectively these orbits affect the electron velocity distribution function and lead to the appearance of the "non-gyrotropic" elements in the pressure tensor. Quantification of this effect has important applications in space and laboratory plasma, one of which is tracing the electron diffusion region (EDR) of magnetic reconnection in space observations. Three different measures of agyrotropy of pressure tensor have previously been proposed, namely, A∅ e , Dng and Q. The multitude of contradictory measures has caused confusion within the community. We revisit the problem by considering the basic properties an agyrotropy measure should have. We show that A∅ e , Dng and Q are all defined based on the sum of the principle minors (i.e. the rotation invariant I 2) of the pressure tensor. We discuss in detail the problems of I 2-based measures and explain why they may produce ambiguous and biased results. We introduce a new measure AG constructed based on the determinant of the pressure tensor (i.e. the rotation invariant I 3) which does not suffer from the problems of I 2-based measures. We compare AG with other measures in 2 and 3-dimension particle-in-cell magnetic reconnection simulations, and show that AG can effectively trace the EDR of reconnection in both Harris and force-free current sheets. On the other hand, A∅ e does not show prominent peaks in the EDR and part of the separatrix in the force-free reconnection simulations, demonstrating that A∅ e does not measure all the non-gyrotropic effects in this case, and is not suitable for studying magnetic reconnection in more general situations other than Harris sheet reconnection.

15.
J Geophys Res Space Phys ; 122(11): 10891-10909, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29399431

RESUMO

During a magnetic storm on 23 June 2015, several very intense substorms took place, with signatures observed by multiple spacecraft including DMSP and Magnetospheric Multiscale (MMS). At the time of interest, DMSP F18 crossed inbound through a poleward expanding auroral bulge boundary at 23.5 h magnetic local time (MLT), while MMS was located duskward of 22 h MLT during an inward crossing of the expanding plasma sheet boundary. The two spacecraft observed a consistent set of signatures as they simultaneously crossed the reconnection separatrix layer during this very intense reconnection event. These include (1) energy dispersion of the energetic ions and electrons traveling earthward, accompanied with high electron energies in the vicinity of the separatrix; (2) energy dispersion of polar rain electrons, with a high-energy cutoff; and (3) intense inward convection of the magnetic field lines at the MMS location. The high temporal resolution measurements by MMS provide unprecedented observations of the outermost electron boundary layer. We discuss the relevance of the energy dispersion of the electrons, and their pitch angle distribution, to the spatial and temporal evolution of the boundary layer. The results indicate that the underlying magnetotail magnetic reconnection process was an intrinsically impulsive and the active X-line was located relatively close to the Earth, approximately at 16-18 RE.

16.
Phys Rev Lett ; 117(18): 185101, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27835028

RESUMO

Supported by a kinetic simulation, we derive an exclusion energy parameter E_{X} providing a lower kinetic energy bound for an electron to cross from one inflow region to the other during magnetic reconnection. As by a Maxwell demon, only high-energy electrons are permitted to cross the inner reconnection region, setting the electron distribution function observed along the low-density side separatrix during asymmetric reconnection. The analytic model accounts for the two distinct flavors of crescent-shaped electron distributions observed by spacecraft in a thin boundary layer along the low-density separatrix.

17.
Geophys Res Lett ; 43(10): 4841-4849, 2016 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-27867235

RESUMO

We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward/earthward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.

18.
Phys Rev Lett ; 117(16): 165101, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27792387

RESUMO

Collisionless shock nonstationarity arising from microscale physics influences shock structure and particle acceleration mechanisms. Nonstationarity has been difficult to quantify due to the small spatial and temporal scales. We use the closely spaced (subgyroscale), high-time-resolution measurements from one rapid crossing of Earth's quasiperpendicular bow shock by the Magnetospheric Multiscale (MMS) spacecraft to compare competing nonstationarity processes. Using MMS's high-cadence kinetic plasma measurements, we show that the shock exhibits nonstationarity in the form of ripples.

19.
Geophys Res Lett ; 43(10): 4716-4724, 2016 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-27635105

RESUMO

New Magnetospheric Multiscale (MMS) observations of small-scale (~7 ion inertial length radius) flux transfer events (FTEs) at the dayside magnetopause are reported. The 10 km MMS tetrahedron size enables their structure and properties to be calculated using a variety of multispacecraft techniques, allowing them to be identified as flux ropes, whose flux content is small (~22 kWb). The current density, calculated using plasma and magnetic field measurements independently, is found to be filamentary. Intercomparison of the plasma moments with electric and magnetic field measurements reveals structured non-frozen-in ion behavior. The data are further compared with a particle-in-cell simulation. It is concluded that these small-scale flux ropes, which are not seen to be growing, represent a distinct class of FTE which is generated on the magnetopause by secondary reconnection.

20.
Science ; 352(6290): aaf2939, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27174677

RESUMO

Magnetic reconnection is a fundamental physical process in plasmas whereby stored magnetic energy is converted into heat and kinetic energy of charged particles. Reconnection occurs in many astrophysical plasma environments and in laboratory plasmas. Using measurements with very high time resolution, NASA's Magnetospheric Multiscale (MMS) mission has found direct evidence for electron demagnetization and acceleration at sites along the sunward boundary of Earth's magnetosphere where the interplanetary magnetic field reconnects with the terrestrial magnetic field. We have (i) observed the conversion of magnetic energy to particle energy; (ii) measured the electric field and current, which together cause the dissipation of magnetic energy; and (iii) identified the electron population that carries the current as a result of demagnetization and acceleration within the reconnection diffusion/dissipation region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...